Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
J Clin Invest ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662435

RESUMO

Cancer cells exhibit heightened secretory states that drive tumor progression. Here, we identify a chromosome 3q amplicon that serves as a platform for secretory regulation in cancer. The 3q amplicon encodes multiple Golgi-resident proteins, including the scaffold Golgi integral membrane protein 4 (GOLIM4) and the ion channel ATPase Secretory Pathway Ca2+ Transporting 1 (ATP2C1). We show that GOLIM4 recruits ATP2C1 and Golgi phosphoprotein 3 (GOLPH3) to coordinate calcium-dependent cargo loading and Golgi membrane bending and vesicle scission. GOLIM4 depletion disrupts the protein complex, resulting in a secretory blockade that inhibits the progression of 3q-amplified malignancies. In addition to its role as a scaffold, GOLIM4 maintains intracellular manganese (Mn) homeostasis by binding excess Mn in the Golgi lumen, which initiates the routing of Mn-bound GOLIM4 to lysosomes for degradation. We show that Mn treatment inhibits the progression of multiple types of 3q-amplified malignancies by degrading GOLIM4, resulting in a secretory blockade that interrupts pro-survival autocrine loops and attenuates pro-metastatic processes in the tumor microenvironment. Potentially underlying the selective activity of Mn against 3q-amplified malignancies, ATP2C1 co-amplification increases Mn influx into the Golgi lumen, resulting in a more rapid degradation of GOLIM4. These findings show that functional cooperativity between co-amplified genes underlies heightened secretion and a targetable secretory addiction in 3q-amplified malignancies.

2.
Carcinogenesis ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629149

RESUMO

Inflammation and aberrant cellular metabolism are widely recognized as hallmarks of cancer. In pancreatic ductal adenocarcinoma (PDAC), inflammatory signaling and metabolic reprogramming are tightly interwoven, playing pivotal roles in the pathogenesis and progression of the disease. However, the regulatory functions of inflammatory mediators in metabolic reprogramming in pancreatic cancer have not been fully explored. Earlier, we demonstrated that pro-inflammatory mediator macrophage migration inhibitory factor (MIF) enhances disease progression by inhibiting its downstream transcriptional factor nuclear receptor subfamily 3 group C member 2 (NR3C2). Here, we provide evidence that MIF and NR3C2 interactively regulate metabolic reprogramming, resulting in MIF-induced cancer growth and progression in PDAC. MIF positively correlates with the HK1 (hexokinase 1), HK2 (hexokinase 2), and LDHA (lactate dehydrogenase) expression and increased pyruvate and lactate production in PDAC patients. Additionally, MIF augments glucose uptake and lactate efflux by upregulating HK1, HK2 and LDHA expression in pancreatic cancer cells in vitro and in mouse models of PDAC. Conversely, a reduction in HK1, HK2, LDHA expression is observed in tumors with high NR3C2 expression in PDAC patients. NR3C2 suppresses HK1, HK2, and LDHA expression, thereby inhibiting glucose uptake and lactate efflux in pancreatic cancer. Mechanistically, MIF-mediated regulation of glycolytic metabolism involves the activation of MAPK-ERK signaling pathway, whereas NR3C2 interacts with the activator protein 1 (AP-1) to regulate glycolysis. Our findings reveal an interactive role of the MIF/NR3C2 axis in regulating glucose metabolism supporting tumor growth and progression and may be a potential target for designing novel approaches for improving disease outcome.

3.
Cell Rep Med ; 5(3): 101446, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442712

RESUMO

Germline variation and somatic alterations contribute to the molecular profile of cancers. We combine RNA with whole genome sequencing across 1,218 cancer patients to determine the extent germline structural variants (SVs) impact expression of nearby genes. For hundreds of genes, recurrent and common germline SV breakpoints within 100 kb associate with increased or decreased expression in tumors spanning various tissues of origin. A significant fraction of germline SV expression associations involves duplication of intergenic enhancers or 3' UTR disruption. Genes altered by both somatic and germline SVs include ATRX and CEBPA. Genes essential in cancer cell lines include BARD1 and IRS2. Genes with both expression and germline SV breakpoint patterns associated with patient survival include GCLM. Our results capture a class of phenotypic variation at work in the disease setting, including genes with cancer roles. Specific germline SVs represent potential cancer risk variants for genetic testing, including those involving genes with targeting implications.


Assuntos
Neoplasias , Transcriptoma , Humanos , Transcriptoma/genética , Neoplasias/genética , RNA , Células Germinativas
4.
Nat Commun ; 15(1): 1373, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355560

RESUMO

SMARCB1 loss has long been observed in many solid tumors. However, there is a need to elucidate targetable pathways driving growth and metastasis in SMARCB1-deficient tumors. Here, we demonstrate that SMARCB1 deficiency, defined as genomic SMARCB1 copy number loss associated with reduced mRNA, drives disease progression in patients with bladder cancer by engaging STAT3. SMARCB1 loss increases the chromatin accessibility of the STAT3 locus in vitro. Orthotopically implanted SMARCB1 knockout (KO) cell lines exhibit increased tumor growth and metastasis. SMARCB1-deficient tumors show an increased IL6/JAK/STAT3 signaling axis in in vivo models and patients. Furthermore, a pSTAT3 selective inhibitor, TTI-101, reduces tumor growth in SMARCB1 KO orthotopic cell line-derived xenografts and a SMARCB1-deficient patient derived xenograft model. We have identified a gene signature generated from SMARCB1 KO tumors that predicts SMARCB1 deficiency in patients. Overall, these findings support the clinical evaluation of STAT3 inhibitors for the treatment of SMARCB1-deficient bladder cancer.


Assuntos
Interleucina-6 , Neoplasias da Bexiga Urinária , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Cancer Res Commun ; 4(1): 164-169, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38259096

RESUMO

The extent to which non-genetic environmental factors, such as diet, contribute to carcinogenesis has been long debated. One potential mechanism for the effects of environmental factors is through epigenetic modifications that affect gene expression without changing the underlying DNA sequence. However, the functional cooperation between dietary factors and cancer-causing epigenetic regulation is largely unknown. Here, we use a mouse model of age-dependent p16 epimutation, in which the p16 gene activity is directly controlled by promoter DNA methylation. We show p16 epimutation is modulated by folate and cofactors in dietary supplementation, which leads to increased colon cancer risk. Importantly, our findings provide functional evidence concerning the safety of folate fortification in the general population. SIGNIFICANCE: Our study demonstrates that dietary folate and cofactors modulate tumor-suppressor gene methylation to increase intestinal tumorigenesis. Our findings highlight the need for monitoring the long-term safety of folate fortification in high-risk individuals.


Assuntos
Carcinogênese , Inibidor p16 de Quinase Dependente de Ciclina , Epigênese Genética , Neoplasias Intestinais , Animais , Humanos , Camundongos , Carcinogênese/genética , Transformação Celular Neoplásica , Dieta , Ácido Fólico , Neoplasias Intestinais/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética
6.
Endocrinology ; 165(4)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38227801

RESUMO

Endometriosis is a common and debilitating disease, affecting ∼170 million women worldwide. Affected patients have limited therapeutic options such as hormonal suppression or surgical excision of the lesions, though therapies are often not completely curative. Targeting receptor tyrosine kinases (RTKs) could provide a nonhormonal treatment option for endometriosis. We determined that 2 RTKs, macrophage-colony stimulating factor 1 receptor (CSF1R) and mast/stem cell growth factor receptor KIT (KIT), are overexpressed in endometriotic lesions and could be novel nonhormonal therapeutic targets for endometriosis. The kinase activity of CSF1R and KIT is suppressed by pexidartinib, a small molecule inhibitor that was recently approved by the US Food and Drug Administration. Using immunohistochemistry, we detected CSF1R and KIT in endometriotic tissues obtained from peritoneal lesions, colorectal lesions, and endometriomas. Specifically, we show that KIT is localized to the epithelium of the lesions, while CSF1R is expressed in the stroma and macrophages of the endometriotic lesions. Given the high epithelial expression of CSF1R and KIT, 12Z endometriotic epithelial cells were used to evaluate the efficacy of dual CSF1R and KIT inhibition with pexidartinib. We found that pexidartinib suppressed activation in 12Z cells of JNK, STAT3, and AKT signaling pathways, which control key proinflammatory and survival networks within the cell. Using quantitative real-time polymerase chain reaction, we determined that pexidartinib suppressed interleukin 8 (IL8) and cyclin D1 (CCND1) expression. Lastly, we demonstrated that pexidartinib decreased cell growth and viability. Overall, these results indicate that pexidartinib-mediated CSF1R and KIT inhibition reduces proinflammatory signaling and cell viability in endometriosis.


Assuntos
Aminopiridinas , Endometriose , Pirróis , Humanos , Feminino , Endometriose/metabolismo , Sobrevivência Celular , Transdução de Sinais , Receptores Proteína Tirosina Quinases/metabolismo
7.
J Cell Biochem ; 124(10): 1628-1645, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683055

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant cancer type worldwide. Although the therapeutic modalities currently used for patients with HNSCC improved in recent decades, HNSCC prognosis is still poor. Therefore, it is an urgent necessity to understand the pathogenesis of HNSCC, to develop novel and effective treatment strategies, and to characterize and identify the oncogenes that are responsible for an aggressive HNSCC phenotype. In this study, we aimed to better understand the roles of miR-1825 in the pathogenesis of HNSCC. We examined the impacts of miR-1825 deregulation on the cancer-associated phenotypes using in vitro tests evaluating cell viability, clonogenicity, cell migration, invasion, apoptosis, and stem cell characteristics. In addition, we investigated the effects of miR-1825 overexpression on the tumor formation capacity of head and neck cancer cells in vivo using nude mice. We searched for potential targets of miR-1825 using microarray analysis and luciferase assay. We found that miR-1825 expression is upregulated in head and neck cells and clinical tumor samples in comparison to corresponding controls, where it potentially acts as an oncogene. We, then, showed that ectopic miR-1825 overexpression promotes cellular phenotypes related to head and neck cancer progression in vitro and has a stimulating potential on cancer formation in vivo. We also identified FREM1 as a direct target of miR-1825 and demonstrated its reduced expression in HNSCC samples using immunohistochemistry analysis. Collectively, we suggest that the miR-1825/FREM1 axis serves as an important mediator of HNSCC development, where miR-1825 acts as an oncogene.

8.
Nat Commun ; 14(1): 5637, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704602

RESUMO

Both proteome and transcriptome data can help assess the relevance of non-coding somatic mutations in cancer. Here, we combine mass spectrometry-based proteomics data with whole genome sequencing data across 1307 human tumors spanning various tissues to determine the extent somatic structural variant (SV) breakpoint patterns impact protein expression of nearby genes. We find that about 25% of the hundreds of genes with SV-associated cis-regulatory alterations at the mRNA level are similarly associated at the protein level. SVs associated with enhancer hijacking, retrotransposon translocation, altered DNA methylation, or fusion transcripts are implicated in protein over-expression. SVs combined with altered protein levels considerably extend the numbers of patients with tumors somatically altered for critical pathways. We catalog both SV breakpoint patterns involving patient survival and genes with nearby SV breakpoints associated with increased cell dependency in cancer cell lines. Pan-cancer proteogenomics identifies targetable non-coding alterations, by virtue of the associated deregulated genes.


Assuntos
Neoplasias , Proteoma , Humanos , Proteoma/genética , Neoplasias/genética , Linhagem Celular , Metilação de DNA/genética , Espectrometria de Massas
9.
Front Endocrinol (Lausanne) ; 14: 1162786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621654

RESUMO

Introduction: Endometriosis, a benign inflammatory disease whereby endometrial-like tissue grows outside the uterus, is a risk factor for endometriosis-associated ovarian cancers. In particular, ovarian endometriomas, cystic lesions of deeply invasive endometriosis, are considered the precursor lesion for ovarian clear-cell carcinoma (OCCC). Methods: To explore this transcriptomic landscape, OCCC from women with pathology-proven concurrent endometriosis (n = 4) were compared to benign endometriomas (n = 4) by bulk RNA and small-RNA sequencing. Results: Analysis of protein-coding genes identified 2449 upregulated and 3131 downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|) in OCCC with concurrent endometriosis compared to endometriomas. Gene set enrichment analysis showed upregulation of pathways involved in cell cycle regulation and DNA replication and downregulation of pathways involved in cytokine receptor signaling and matrisome. Comparison of pathway activation scores between the clinical samples and publicly-available datasets for OCCC cell lines revealed significant molecular similarities between OCCC with concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in OCCC with endometriosis and was significantly upregulated (NGS: log2fold change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93). MiR-10a overexpression in vitro resulted in a significant decrease in proliferation (n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA. Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2 to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target genes that were downregulated in OCCC with endometriosis were involved in receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a overexpression in vitro was correlated with decreased expression of predicted miR-10a target genes critical for proliferation, cell-cycle regulation, and cell survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)]. Discussion: These studies in OCCC suggest that miR-10a-5p is an impactful, potentially oncogenic molecule, which warrants further studies.


Assuntos
Adenocarcinoma de Células Claras , Endometriose , MicroRNAs , Humanos , Feminino , Endometriose/complicações , Endometriose/genética , Transcriptoma , MicroRNAs/genética , Perfilação da Expressão Gênica , Adenocarcinoma de Células Claras/complicações , Adenocarcinoma de Células Claras/genética , Proteínas rap de Ligação ao GTP
10.
Oncogene ; 42(32): 2428-2438, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37400528

RESUMO

The complement system is a major component of the innate immune system that works through the cytolytic effect of the membrane attack complex (MAC). Complement component 7 (C7) is essential for MAC assembly and its precisely regulated expression level is crucial for the cytolytic activity of MAC. We show that C7 is specifically expressed by the stromal cells in both mouse and human prostates. The expression level of C7 inversely correlates with clinical outcomes in prostate cancer. C7 is positively regulated by androgen signaling in the mouse prostate stromal cells. The androgen receptor directly transcriptionally regulates the mouse and human C7. Increasing C7 expression in the C57Bl/6 syngeneic RM-1 and Pten-Kras allografts suppresses tumor growth in vivo. Conversely, C7 haploinsufficiency promotes tumor growth in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Interestingly, replenishing C7 in androgen-sensitive Pten-Kras tumors during androgen depletion only slightly enhances cellular apoptosis, highlighting the diverse mechanisms employed by tumors to counteract complement activity. Collectively, our research indicates that augmenting complement activity could be a promising therapeutic approach to impede the development of castration resistance in prostate cancer.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Camundongos , Humanos , Animais , Complemento C7/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Camundongos Transgênicos , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
11.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292999

RESUMO

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.

12.
Epigenetics ; 18(1): 2180585, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37279148

RESUMO

African American (AA) men have the highest incidence and mortality rate from Prostate cancer (PCa) than any other racial/ethnic group. To date, PCa genomic studies have largely under-represented tumour samples from AA men. We measured genome-wide DNA methylation in benign and tumor prostate tissues from AA men using the Illumina Infunium 850 K EPIC array. mRNA expression database from a subset of the AA biospecimen were used to assess correlation of transcriptome and methylation datasets. Genome-wide methylation analysis identified 11,460 probes that were significant (p < 0.01) and differentially methylated in AA PCa compared to normal prostate tissues and showed significant (p < 0.01) inverse-correlation with mRNA expression. Ingenuity pathway analysis and Gene Ontology analysis in our AA dataset compared with TCGA dataset showed similarities in methylation patterns: top candidate genes with significant hypermethylation and corresponding down-regulated gene expression were associated with biological pathways in hemidesmosome assembly, mammary gland development, epidermis development, hormone biosynthesis, and cell communication. In addition, top candidate genes with significant hypomethylation and corresponding up-regulated gene expression were associated with biological pathways in macrophage differentiation, cAMP-dependent protein kinase activity, protein destabilization, transcription co-repression, and fatty acid biosynthesis. In contrast, differences in genome-wide methylation in our AA dataset compared with TCGA dataset were enriched for genes in steroid signalling, immune signalling, chromatin structure remodelling and RNA processing. Overall, differential methylation of AMIGO3, IER3, UPB1, GRM7, TFAP2C, TOX2, PLSCR2, ZNF292, ESR2, MIXL1, BOLL, and FGF6 were significant and uniquely associated with PCa progression in our AA cohort.


Assuntos
Metilação de DNA , Neoplasias da Próstata , Masculino , Humanos , Transcriptoma , Negro ou Afro-Americano/genética , Epigenômica , Neoplasias da Próstata/metabolismo , RNA Mensageiro/metabolismo , Regulação Neoplásica da Expressão Gênica , Ilhas de CpG , Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética
13.
J Exp Clin Cancer Res ; 42(1): 113, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143122

RESUMO

BACKGROUND: Methylation of the p16 promoter resulting in epigenetic gene silencing-known as p16 epimutation-is frequently found in human colorectal cancer and is also common in normal-appearing colonic mucosa of aging individuals. Thus, to improve clinical care of colorectal cancer (CRC) patients, we explored the role of age-related p16 epimutation in intestinal tumorigenesis. METHODS: We established a mouse model that replicates two common genetic and epigenetic events observed in human CRCs: Apc mutation and p16 epimutation. We conducted long-term survival and histological analysis of tumor development and progression. Colonic epithelial cells and tumors were collected from mice and analyzed by RNA sequencing (RNA-seq), quantitative PCR, and flow cytometry. We performed single-cell RNA sequencing (scRNA-seq) to characterize tumor-infiltrating immune cells throughout tumor progression. We tested whether anti-PD-L1 immunotherapy affects overall survival of tumor-bearing mice and whether inhibition of both epigenetic regulation and immune checkpoint is more efficacious. RESULTS: Mice carrying combined Apc mutation and p16 epimutation had significantly shortened survival and increased tumor growth compared to those with Apc mutation only. Intriguingly, colon tumors with p16 epimutation exhibited an activated interferon pathway, increased expression of programmed death-ligand 1 (Pdl1), and enhanced infiltration of immune cells. scRNA-seq further revealed the presence of Foxp3+ Tregs and γδT17 cells, which contribute to an immunosuppressive tumor microenvironment (TME). Furthermore, we showed that a combined therapy using an inhibitor of DNA methylation and a PD-L1 immune checkpoint inhibitor is more effective for improving survival in tumor-bearing mice than blockade of either pathway alone. CONCLUSIONS: Our study demonstrated that age-dependent p16 epimutation creates a permissive microenvironment for malignant transformation of polyps to colon cancer. Our findings provide a mechanistic rationale for future targeted therapy in patients with p16 epimutation.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Animais , Camundongos , Epigênese Genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Metilação de DNA , Neoplasias Colorretais/patologia , Microambiente Tumoral/genética , Antígeno B7-H1/genética
14.
Oncotarget ; 14: 399-412, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37141409

RESUMO

Gene-level associations obtained from mass-spectrometry-based cancer proteomics datasets represent a resource for identifying gene candidates for functional studies. When recently surveying proteomic correlates of tumor grade across multiple cancer types, we identified specific protein kinases having a functional impact on uterine endometrial cancer cells. This previously published study provides just one template for utilizing public molecular datasets to discover potential novel therapeutic targets and approaches for cancer patients. Proteomic profiling data combined with corresponding multi-omics data on human tumors and cell lines can be analyzed in various ways to prioritize genes of interest for interrogating biology. Across hundreds of cancer cell lines, CRISPR loss of function and drug sensitivity scoring can be readily integrated with protein data to predict any gene's functional impact before bench experiments are carried out. Public data portals make cancer proteomics data more accessible to the research community. Drug discovery platforms can screen hundreds of millions of small molecule inhibitors for those that target a gene or pathway of interest. Here, we discuss some of the available public genomic and proteomic resources while considering approaches to how these could be leveraged for molecular biology insights or drug discovery. We also demonstrate the inhibitory effect of BAY1217389, a TTK inhibitor recently tested in a Phase I clinical trial for the treatment of solid tumors, on uterine cancer cell line viability.


Assuntos
Neoplasias , Proteômica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Genômica , Proteínas Quinases
15.
Sci Adv ; 9(19): eade0059, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37172086

RESUMO

CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.


Assuntos
Edição de Genes , Neoplasias , Animais , Camundongos , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Neoplasias/genética , Neoplasias/terapia , Reparo de DNA por Recombinação , Modelos Animais de Doenças
17.
Commun Biol ; 6(1): 261, 2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906706

RESUMO

The regenerative potential of the endometrium is attributed to endometrial stem cells; however, the signaling pathways controlling its regenerative potential remain obscure. In this study, genetic mouse models and endometrial organoids are used to demonstrate that SMAD2/3 signaling controls endometrial regeneration and differentiation. Mice with conditional deletion of SMAD2/3 in the uterine epithelium using Lactoferrin-iCre develop endometrial hyperplasia at 12-weeks and metastatic uterine tumors by 9-months of age. Mechanistic studies in endometrial organoids determine that genetic or pharmacological inhibition of SMAD2/3 signaling disrupts organoid morphology, increases the glandular and secretory cell markers, FOXA2 and MUC1, and alters the genome-wide distribution of SMAD4. Transcriptomic profiling of the organoids reveals elevated pathways involved in stem cell regeneration and differentiation such as the bone morphogenetic protein (BMP) and retinoic acid signaling (RA) pathways. Therefore, TGFß family signaling via SMAD2/3 controls signaling networks which are integral for endometrial cell regeneration and differentiation.


Assuntos
Endométrio , Proteínas Smad , Útero , Animais , Feminino , Camundongos , Diferenciação Celular , Endométrio/metabolismo , Epitélio , Homeostase , Proteínas Smad/metabolismo
18.
Cell Rep Med ; 4(2): 100932, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36731467

RESUMO

Molecular mechanisms underlying cancer metastasis span diverse tissues of origin. Here, we synthesize and collate the transcriptomes of patient-derived xenografts and patient tumor metastases, and these data collectively represent 38 studies and over 3,000 patients and 4,000 tumors. We identify four expression-based subtypes of metastasis transcending tumor lineage. The first subtype has extensive copy alterations, higher expression of MYC transcriptional targets and DNA repair genes, and bromodomain inhibitor response association. The second subtype has higher expression of genes involving metabolism and prostaglandin synthesis and regulation. The third subtype has evidence of neuronal differentiation, higher expression of DNA and histone methylation genes and EZH2 transcriptional targets, and BCL2 inhibitor response association. The fourth subtype has higher expression of immune checkpoint and Notch pathway genes. The metastasis subtypes reflect expression differences from paired primaries, with subtype switching being common. These subtypes facilitate understanding of the molecular underpinnings of metastases beyond tissue-oriented domains, with therapeutic implications.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Transcriptoma
19.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757799

RESUMO

Hypersecretory malignant cells underlie therapeutic resistance, metastasis, and poor clinical outcomes. However, the molecular basis for malignant hypersecretion remains obscure. Here, we showed that epithelial-mesenchymal transition (EMT) initiates exocytic and endocytic vesicular trafficking programs in lung cancer. The EMT-activating transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) executed a PI4KIIIß-to-PI4KIIα (PI4K2A) dependency switch that drove PI4P synthesis in the Golgi and endosomes. EMT enhanced the vulnerability of lung cancer cells to PI4K2A small-molecule antagonists. PI4K2A formed a MYOIIA-containing protein complex that facilitated secretory vesicle biogenesis in the Golgi, thereby establishing a hypersecretory state involving osteopontin (SPP1) and other prometastatic ligands. In the endosomal compartment, PI4K2A accelerated recycling of SPP1 receptors to complete an SPP1-dependent autocrine loop and interacted with HSP90 to prevent lysosomal degradation of AXL receptor tyrosine kinase, a driver of cell migration. These results show that EMT coordinates exocytic and endocytic vesicular trafficking to establish a therapeutically actionable hypersecretory state that drives lung cancer progression.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Vesículas Secretórias , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...